
r . ” 

On Effectiveness of a Message-Driven Confidence-Driven 
Protocol for Guarded Software Upgrading* 

Ann Tai  Kam  Tso Leon Alkalai Savio Chau William  Sanders 
IA Tech, Inc. Jet Propulsion  Laboratory University of Illinois 

Los Angeles, CA  90024 Pasadena, CA  91109 Urbana, IL 61801 

Abstract 

In  order  to accomplish dependable  onboard  evolution, we develop a methodology 
which is called guarded  software  upgrading (GSU). The core of the methodology is 
a low-cost error  containment and recovery protocol that escorts an upgraded software 
component through  onboard  validation  and  guarded  operation,  safeguarding mission 
functions. The message-driven confidence-driven (MDCD)  nature of the protocol elim- 
inates  the need for costly process  coordination or atomic  action, yet guaranteeing  the 
system to reach a consistent  global state  upon  the completion of the rollback or roll- 
forward actions  carried out by individual processes during  error recovery. Aimed at 
validating the effectiveness of the MDCD  protocol  with  respect to  its ability, in a real- 
istic, non-ideal execution  environment, to enhance  system  reliability when a software 
component  undergoes  onboard  upgrading, we conduct a stochastic  activity network 
model based analysis. The results confirm the effectiveness of the protocol as origi- 
nally surmised. Moreover, the model-based  analysis provides to us useful insights about 
the system behavior resulting  from  the use of the protocol  under various conditions  in 
its execution  environment,  facilitating effective utility of the protocol. 
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1 Introduction 

The  onboard  computing  systems for NASA’s future deep-space applications require to have 
the ability to accomplish  performance  and  dependability  enhancement  during a long-life 
mission [l]. This  capability is referred to as evolvability. Concepts  related to evolvability 
include  hardware reconfigurability and software  upgradability. A challenge that arises  from 
onboard software upgrade is to  guard  the  system  against  performance loss caused by residual 
design faults  introduced by the modification of a spacecraft/science  function. Besides the 
previous lessons on how unprotected software  upgrades  caused  severe damages  to  space 
missions (see [a ,  31, for example), a strong  testimony emerged  from  MCI  WorldCom’s  recent 
10-day frame relay outage [4]. The  outage  began  August  5, 1999,  four weeks after  an  upgrade 
to  a new switching  software to  allow the  network  to  handle increased  traffic. The incident 
affected about 15% of MCI WorldCom’s  network and 30% of its customers who rely on the 
high-speed frame relay. 

Although  researchers have been  investigating  into  dependable  system  upgrade for critical 
applications [5, 61, the proposed  solutions, to  our  best knowledge, all  require  special effort 
for  developing  dedicated  system  resource  redundancy.  Due to  the severe constraints on cost, 
mass  and power consumption of the  spacecraft, NASA’s deep-space  applications would not 
be  able to  directly  benefit  from  those  solutions. Moreover, the new-generation  onboard 
computing  systems such as  the X2000 [l] which has being  developed at NASA/JPL employ 
distributed  architectures. Accordingly, error  contamination  among  interacting processes, 
which received little  attention from the prior work concerning dependable  system  upgrade, 
is one of our  major concerns. With  the above  motivation, we develop a methodology called 
guarded software upgrading (GSU) [7]. The methodology is based on a two-stage  approach: 
The first stage is called onboard validation stage  during which we attempt  to establish  high 
confidence in the new version, through  onboard  test  runs  under  the real avionics system  and 
environment  conditions;  whereas the second stage is called guarded  operation stage  during 
which we allow the new version to  actually service the mission under  the  escort of the old 
version. To ensuring low development cost, we exploit  inherent  system  resource  redundancies 
as the  fault  tolerance  means. Specifically, we let an old version,  in which we have high 
confidence due  to  its long onboard  execution  time, to escort  the new version through  onboard 
validation  and  guarded  operation; we also  make use of the processor that otherwise would 
be idle during a non-critical mission phase  during which onboard software upgrade  takes 
place, allowing concurrent  execution of the new and old versions of the  application software 
component  aimed for upgrading. To reduce  performance  cost, we devise an  error  containment 
and recovery protocol by utilizing the  pertinent  features of our  application.  In  particular, 
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we discriminate i) between internal  and  external messages in terms of their  criticality to  the 
mission, and ii)  between the  individual software  components  with  respect to  our confidence  in 
their reliability. As a result)  the  protocol is message-driven and confidence-driven (MDCD), 
requiring  no  costly  process  coordination  or  atomic  action. The MDCD  protocol  permits  the 
decisions on  whether to  take a checkpoint upon  interprocess  communication  and  whether to  
rollback or roll forward  during recovery to  be  made locally by individual  processes,  enabling 
cost-effective checkpointing  and cascading-rollback free error recovery. In  this  paper, we 
focus  on  analyzing the effectiveness of the  protocol  during  the  guarded  operation  stage. 

To  account for potential process state  contamination  (due  to  the  errors in the new version) 
and messages validity) we adapt  the notion of “global state consistency”  from the  literatures 
concerning  rollback recovery of hardware  faults [8, 91. Based  on the  adapted  notion) we 
have developed theorems  and  conducted  formal proofs to  show that  the MDCD  protocol 
guarantees  that  the  system will reach a consistent  global state  upon  the  completion of the 
rollback or roll-forward actions  carried  out by individual processes during  error recovery 
[lo, 111. Global state consistency is the most fundamental  criterion for a correct recovery 
and assures the system to be  failure free if the MDCD  protocol is run in an ideal execution 
environment where 1) the “old”  software  components which are viewed as the high-confidence 
components by the  protocol  are  truly  faultless)  2)  error  conditions in a process state will be 
definitely  manifested  in the messages  sent by the  corresponding process) and 3) the  error 
detection  mechanism has a perfect coverage. As any  reliability  enhancement  schemes, the 
realistic  goal of the MDCD  protocol is to significantly  reduce  system  failure  probability rather 
than assuring the  system  to  be  failure free, due  to  that  the ideal  execution  environment  never 
exists  in  real life. Accordingly, we are  motivated  to  validate  the  protocol’s effectiveness in 
terms of reliability  improvement when the  criteria for the ideal  execution  environment are 
not  satisfied)  through  probabilistic modeling. To realize the goal requires a model to  capture 
numerous  interdependencies  among  system  attributes. Accordingly, we choose to  apply 
stochastic  activity networks (SANs) [12, 131 for the model-based  analysis due  to SANs’ 
capability of explicitly  representing  dependencies  among  system  attributes. The  results 
confirm the effectiveness of the MDCD  protocol  and  provide to  us useful insights  about 
the  system  behavior in a non-ideal  environment. Moreover, the  study  demonstrates  that a 
model-based  analysis will enable  us to  estimate  the  extents  to which we can  relax the  the 
criteria for the ideal  execution  environment)  facilitating effective utility of the  protocol. 

The remainder of the  paper is organized as follows. Section 2 provides  background  infor- 
mation.  Section 3 describes the MDCD  protocol for guarded software upgrading) followed 
by Section 4 which presents a SAN model  based  reliability  analysis that validates the effec- 
tiveness of the protocol. The concluding  remark  highlights the significance of this effort. 
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2 Background: GSU Framework 

The GSU framework is based on the Baseline X2000 First Delivery Architecture that com- 
prises three  high-performance  computing nodes  (each of which has a 128-Mbyte  local DRAM), 
a group of subsystem micro-controllers, and a variety of devices,  all  connected by the  fault- 
tolerant  bus  network  that complies with the commercial  interface standard  IEEE 1394 [14]. 
Further,  the DMA  (direct memory access) engine that is built  into  the  IEEE 1394 bus in- 
terface is responsible for transferring data (messages)  directly  from the  bus  into  either  the 
non-volatile  memory  on the PC1 bus  or the processor  local  memory  (where the message 
buffer resides). 

Since a software  upgrade is normally conducted  during a less critical mission phase when 
the spacecraft  and science functions  do  not  require a full computation power,  only  two pro- 
cesses corresponding  two different application  software  components  are  supposed to concur- 
rently  run  and  interact  with each other.  To exploit  inherent  system  resource  redundancies, 
we let  the old version in which we have high confidence due  to  its long  onboard execution 
time escort the new version software  component  through  onboard  validation  and  guarded 
operation.  Further, we make use of the processor that otherwise would be idle to enable 
the  three processes (Le., the two corresponding to  the new and old versions, and  the process 
corresponding to  the second  application  software  component) to  execute  concurrently.  To 
aid  the  description, we introduce  the following notation: 

Pyw The process  corresponding to  the new version of an  application software 
component. 

Pyld The process  corresponding to  the old version of the application  software 
component. 

P2 The process  corresponding to  another  application software  component (which 
is not  undergoing  upgrade). 

Figure 1 illustrates  the two-stage  approach. As shown  in  Figure l(a),  during  the  onboard 
validation  stage,  the  outgoing messages of the shadow  process PYw are  suppressed  but se- 
lectively logged (as shown by the  dashed lines  with arrows), while PTw receives the  same 
incoming messages as the  active process P:ld does (as shown by the solid lines with  arrows). 
Thus, PYw and P:ld can  perform  the  same  computation based on  identical  input  data. 

By maintaining an onboard  error log that  can be  downloaded to  the  ground  to facilitate 
statistical  modeling  and  heuristic  trend  analysis,  onboard  validation  facilitates  the decisions 
on  whether  and when to  permit PFw to enter mission operation. If onboard  validation com- 
pletes successfully, then Pyw and P;ld switch their roles and  enter  the  guarded  operation 
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(a) Onboard Validation Stage  (b) Guarded Operation Stage 

Figure 1: Two-Stage  Approach to  Guarded Software  Upgrading 

stage.  In  order  to minimize the  impact  and risk on mission operation,  onboard software 
upgrading is usually  carried out in an incremental  manner.  In  particular,  most  upgrades 
involve only a single software  component at a time. As a result,  the  interaction  patterns 
(message types  and  ordering)  among  the processes will remain the  same  after  an  upgrade. 
Accordingly, as indicated by Figure l(b),  during  the guarded  operation, Py" actually in- 
fluences the  external world and  interacts  with process Pa, while the messages of P:ld that 
convey its  computation  results to  Pz or  external  subsystems  are now suppressed  and logged. 
Should an  error of PY" be  detected, P?ld will take over PYw's active role and  the  system 
will resume  its  normal  mode.  The  guarded  operation is enabled by an  error  containment 
and recovery protocol that is described  in the next  section. 

3 MDCD Protocol 

3.1 Basic Assumptions 

The following are  our  assumptions based on which we devise the  error  containment  and 
recovery protocol: 

Al)  The old version of a software component usually has a sufficiently long  onboard exe- 
cution  time  and  thus  can  be considered  significantly  more  reliable than  the upgraded 
version newly installed  through  uploading. 

A2) An erroneous state of a process is likely to  affect the correctness of its outgoing mes- 
sages, while an erroneous  message received by an application  software  component will 
result  in process state  contamination. 
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A3) The  error  detection  mechanism,  acceptance  test  (AT),  has a high coverage (the condi- 
tional  probability that  the  testing mechanism  rejects a computation result given that 
this  result is erroneous). 

A1  indicates  that  the likelihood that  an error  condition  occurs  in  the old version of an 
application software  component  can  be  considered negligible, implying Pyla and P2 will not 
be  treated as possible sources of process state  contamination by the  protocol. A2 implies 
that if an outgoing message is validated by AT, then  the process state of the  sender process 
and  all  the messages sent  or received prior to  performing the AT can  be considered non- 
contaminated and valid, respectively. Whereas A3 suggests that  the event that  an erroneous 
command  is released to devices is unlikely to occur. 

3.2 Protocol Description 

A major difficulty in  error recovery for  embedded  systems is that we are  unable to  rollback 
the effect of a computation  error  after  it  propagates to  the devices. Since error  propagation 
in a distributed  system is in  general  caused by message passing, the error  containment  and 
recovery protocol we devise is message driven  in the sense that, 

1) Checkpointing is performed upon message passing or  an event  triggered by message 
passing, and 

2) Acceptance  test (AT) is invoked when a process attempts  to send a message to  a 
subsystem  external to  the  computing  node (e.g., a device). 

We call the messages sent to  the subsystems  external to  a computing  node  and  the mes- 
sages  between processes external  messages and internal  messages, respectively. In  embedded 
systems,  external messages are significantly  more  critical than  internal messages because  i) 
they  directly influence the mission operation  and  functions,  and  ii)  their adverse effects can 
not  be reversed through rollback. Hence, for reducing  performance  cost, AT is only  applied 
to validate the  external messages from the processes that  are potentially  contaminated (see 
below for the definition).  Further, Pyld does  not  perform AT because  its  external messages 
will not  be released to devices until  after  error recovery. On  the  other  hand, when Pyw 
or P2 passes an AT successfully, it sends a notification  message to  Pyla to  let  it  update  its 
knowledge about  the validity of process state  and messages. 

To eliminate  the need for the costly  process coordination  or  atomic  action, we enforce 
the following rule (which is  indeed the necessary and sufficient condition  for  checkpointing) 
to  facilitate  error  containment  and recovery efficiency: 

5 



W e  save  the  state of a  process  via  checkpointing if and  only if the  process  is  under 
the  following  situation:  Immediately before its  process  state  becomes  potentially 
contaminated or right  after  its  process  state  gets  validated by  acceptance  test. 

By “a potentially  contaminated process state,” we mean 1) the process state of Pyw in which 
we have not yet  established  enough confidence, or ’2) a process state  that reflects the receipt 
of a not-yet-validated message that is sent by a process when its process state is potentially 
contaminated.  Figure 2 illustrates  the above  concepts. The horizontal  lines  in the figure rep- 
resent the software  executions  along the  time horizon.  Each of the  shaded regions  represents 
the execution  interval during which the  state of the  corresponding process is potentially con- 
taminated.  In  the  diagram,  checkpoints Bk, Aj  and B k + 2  are  established  immediately before 
a process state becomes potentially  contaminated (we call them Type-1 checkpoints), while 
Bk+l, Aj+’, and Bk+3 are  established  right  after a process state gets  validated (we call them 
Type-2 checkpoints).  While  all  these  checkpoint  establishments  are  triggered by the events 
of potential process state  contamination  and process state validation,  the  triggering events 
themselves are induced by message  passing.  Therefore,  checkpointing is message  driven in 
the  protocol. Nonetheless,  message  passing is not  the sufficient condition  for a process to 
establish a checkpoint. As implied by the necessary and sufficient condition  for  checkpoint- 
ing stated  above, message  passing  will  not  trigger  a  process  to  establish  a  checkpoint  unless 
the  message  passing  event  alters  our  confidence in the  process  state(s), that is,  turning a 
potentially  contaminated process state  into a validated state  or vice versa.  Therefore,  the 
protocol is both message driven and confidence driven. The detailed  error  containment  and 
recovery algorithms  that  constitute  the MDCD  protocol  are  shown  in  Appendix A. Note 
that P;lld and P2 will update  their knowledges about  potential process state  contamination 
right  after a Type-1  or  Type-2  checkpoint  establishment  (e.g., each process will set  its  dirty 
bit  to 1 and 0, respectively). 

Error recovery actions  are also message driven and confidence driven  in the sense that 
the AT-based error  detection  are  triggered by the event that PYw or P2 attempts  to send 
an  external message.  Upon the  detection of an  error, Pyld will take over PYw’s active role 
and resume normal  computation  with P2 (the MDCD  protocol will go on leave accordingly). 
By checking their knowledge about process state  contamination locally, both P:ld and P2 
are  able to  make  their decisions on  rollback or roll forward in a straight  forward  manner. 
Accordingly, there  are  three possible  scenarios  in  error recovery’: 

Scenario 1: Both P:ld and P2 rollback to their  most recent  checkpoints. 

lNote  that  the scenario in which P71d rolls  back and P2 rolls forward will  never happen since P7ld will 
gets  contaminated  only  through Pa. 
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Figure 2: Message-Driven Confidence-Driven Checkpoint  Establishment 

Scenario 2: Both P;ld and Pz roll forward. 

Scenario 3: P2 rolls back to its most  recent  checkpoint while P:ld rolls forward. 

Note that  our message-driven confidence-driven strategy is adapted from the checkpoint- 
ing  techniques for hardware  error recovery [8].  Nonetheless,  checkpointing  techniques  for 
hardware  error recovery concern solely the consistency  between  process states for assuring 
correct recovery from hardware  faults;  as  our  objective is to  mitigate  the effect of residual 
faults in an  upgraded software  component,  our  particular concern  is the consistency among 
the views of different processes on process states  integrity, especially  on the valid messages 
(see Section 3.1) reflected in the process states. Accordingly, we adapt  the terminologies and 
definitions  in [8, 91 as follows. A global state comprises the  states of individual  processes, 
including messages between the processes and information  concerning  their verified  correct- 
ness. A valid checkpointing  mechanism  must  assure that  it  is always possible for the  error 
recovery mechanism to bring  the  system  into a global state  that satisfies the following two 
properties: 

Consistency If m is reflected in the global state as a valid message received by a process, 
then m must  also  be reflected in  the global state as a valid message sent by the sender 
process. 

Recoverability If m is reflected in the global state as a valid message sent by a process, then 
m must  also be reflected in the global state as a valid message received by the receiving 
process(es) or  the  error recovery algorithm  must be able to  restore the message m. 
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When  two  or  more  process  states  (or checkpoints  reflecting  process states) comprise a 
global state  that satisfies the consistency  property, we say that these process states  are 
globally consistent, or say, they comprise a consistent global state. Based  on the above 
concepts, we derive Theorem 1, Corollaries 1 and 2 as presented below (the formal  proofs 
can  be  found in [lo, ll]), which claim that  the recovery decisions  made locally by the 
individual processes satisfy  the global state consistency  property. 

Theorem. 1 The  most recent  checkpoints of P;ld and P2 are  always globally consistent. 

Corollary 1 The process  states of P;ld and P2 at  time t that are not  potentially  contaminated 
are  globally consistent. 

Corollary 2 If at  time t the  process  state of P2 is  potentially  contaminated but that of eld 

is  not,  then  the  process  state of P;lld at  time t and  the  process  state of P2 reflected in its   most 
recent  checkpoint  (relative  to t )  are  globally consistent. 

As to recoverability, it is ultimately  assured by the message log of P:ld and two  key 
entities, namely, msg-count and VRrW (see Appendix  A). We omit  further  details since 
they  are  out of the scope of this  paper. 

4 Analysis of Effectiveness 

4.1 Motivation 

The  theorems presented  in the  last section  imply that  the MDCD  protocol will assure the 
system to reach a consistent  global state  upon  the  completion of the rollback or roll-forward 
actions  carried  out by individual processes during  error recovery. As claimed  in  Section 1, 
the global state consistency will further  guarantee  the  system  to  be failure free if the MDCD 
protocol is run in an ideal  execution  environment. By “ideal  execution  environment,” we 
mean  an execution  environment for the  protocol  that satisfies the following criteria: 

C l )  P:ld and P2 are perfectly  reliable. 

C2)  Error  conditions in a process state will be definitely  manifested in the messages sent 
by the corresponding  process. 

C3)  Each AT has a perfect coverage. 
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As the realistic  goal of the  MDCD protocol is to significantly  reduce the probability of 
system  failure  rather  than  assuring  the  system  to be failure  free, the  protocol is anticipated to 
be effective in a non-ideal  execution  environment. Accordingly, the motivation of the model- 
based  reliability  analysis  presented below is to validate  the effectiveness of the protocol 
when it is run in an environment  where  C1,  C2 and  C3  are relaxed. Before we proceed to 
describe the SAN models, we explain the  impacts from  relaxing  these criteria on  system 
failure  behavior as follows. Clearly, an imperfect coverage of AT may  cause an erroneous 
external  message to go undetected  and  thus  lead to  an immediate  system  failure.  And 
a fault  in P7ld or P2 may  result  in an undetected  external  erroneous  message  after  error 
recovery that brings  the system  back to  its normal  computation  mode in which AT is no 
longer performed to validate  external  messages.  Whereas if error  manifestation  in  messages 
is indeterministic, an erroneous  process state may  left  behind  error recovery, which in turn, 
could eventually  lead to system  failure.  Consider the scenario illustrated  in  Figure 2, if a 
residual fault  in Pyw causes an  error  condition before Pyw sends P2 message rnl and  the 
error  condition is subsequently  manifested  in ml, then P2 gets  contaminated. However, if 
the  error  condition in the  contaminated P2 is  not  manifested in MI,  the  external message P2 

subsequently intends to send,  then  the  corresponding AT will be  unable to  detect  the  state 
contamination.  It follows that  the  contaminated process state will be saved in  checkpoints 
Bk+l and Bk+2. Consequently, if Prw fails AT when attempting  to send M2, P2 will rollback 
to B k + 2  that contains  dormant  error  conditions;  and PYid will simply roll forward  because 
its process state is considered  non-contaminated by the protocol  (regardless PYld may gets 
contaminated  through messages mh and ml, from P2). Although the process state of P2 

reflected in B k + 2  and  the process state of PYld upon recovery are globally  consistent, the 
dormant  error  conditions may  cause the  system to fail  eventually. 

Note that  criteria C1, C2 and  C3 for the ideal  execution  environment of the MDCD 
protocol are similar to  but  stronger  than  assumptions Al ,  A2 and A3 based which we devise 
the protocol  (Section 3.1), respectively. In  order to validate  the effectiveness of the protocol 
with  respect to reliability  improvement  under  realistic,  non-ideal  conditions, we carry  out 
probabilistic  modeling by relaxing the  criteria for the ideal  environment as described below. 

4.2 SAN Models 

Stochastic  activity  network, a variant of stochastic  Petri net (SPN), is  first  introduced  in 
[la] and  currently employed  in  evaluation  tools  such as UltraSAN [13]. Through  the use of 
additional  primitives  such as cases,  input  gates and output  gates, SANS have a relatively  rich 
syntax for the purpose of specifying a complex  stochastic  process. Specifically, cases permit 
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an expression of uncertainty  about  the  marking  that  results  from  the “completion of an 
activity”  (analogous to  the “firing of an SPN transition”), specified by a discrete  probability 
distribution over the cases of that activity. Moreover, the values of this  distribution  can 
depend  on  the  marking of the  network.  In  other words, SANs permit  an explicit specifica- 
tion of spatial as well as temporal  uncertainty.  Input  and  output  gates  associated  with  an 
activity  describe,  respectively, how that  activity is enabled and how its  completion affects 
the  subsequent  marking of the network. More precisely, input  gates  permit a functional 
specification of the enabling  predicate  and  marking  updates;  output  gates specify how the 
markings of the  output places are  altered when the  activity  completes. 

Recall that  the MDCD  protocol  is  intended to achieve error  containment  and recovery 
efficiency  by discriminating  between the individual  software  components  with  respect to  our 
confidence in  their reliability. Accordingly, the behavior of the  three processes, namely, 
PYw, P:ld and P2, resulting  from the protocol  exhibit  little  symmetry, which could  lead to  a 
complex  model. However, by exploiting  SANs’  marking  dependent  specification  capability, 
we obtain a rather concise SAN model  that  captures all the relevant details of the system 
behavior  resulting  from the MDCD  protocol, as shown in  Figure 3.  

The SAN representation  can  be viewed consisting of three  parts.  The  major  components 
of the left part  are  the  timed  activities  PlNec, PlOec and  P2ec which represent  the  error 
condition  occurrence in P?”, P:ld and P2, respectively. By assigning a non-zero  (Poisson) 
failure  rate to  each of the  timed  activities, we relax  criterion C l .  Recall that P;ld and P2 

are  regarded as high-confidence components in the  system by the MDCD  protocol,  meaning 
that  the  error  conditions in P;ld and P2 caused by their own faults will be neglected by 
the  error  containment  and recovery mechanisms of the  protocol.  This  necessitates different 
representations of error  conditions  caused by the  faults in differing processes.  Therefore, 
while the  output  gate  PlNerr  sets  the  marking of the  output place PlNctn  to  one  upon  the 
completion of PlNec,  the  output  gates  PlOerr  and  P2err will result  in two tokens in PlOctn 
and  P2ctn,  upon  the  completion of PlOec and P2ec, respectively. 

The middle  part of the SAN representation comprises the  timed  activities PINmsg, PlOmsg 
and P2msg. These  three  activities play important roles in representing the interdependen- 
cies among  the processes in terms of error  contamination. By specifying  marking-dependent 
probability  distributions over the cases of these  timed  activities,  uncertainty  about  the  man- 
ifestation of error  conditions  in a contaminated process state in the messages generated by 
the process is explicitly  represented, which enables  us to relax  criterion  C2. As shown in 
Table 1, the possible  combinations of the characteristics of an  outgoing message  from Pyw 
are  enumerated by the cases of the  activity PINmsg. Specifically, each  message  is  first  char- 
acterized by the  external  and  internal message types probabilistically. And if the message is 
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Figure 3: SAN Model for the MDCD Protocol 

generated when the process is  in an erroneous state, which will be  indicated by the marking 
of the  input place PlNctn,  then  the message will be  further  characterized probabilistically 
with  respect to whether  being affected by the  error  conditions in the process state. How- 
ever) for the circumstance  where  the  process state of Pf"" is not  erroneous, which  will be 
indicated by the  empty  marking of PINctn, the above uncertainty is irrelevant.  Accordingly) 
by assigning a zero probability to each,  cases 3 and 4 which represent  erroneous internal  and 
external messages)  respectively,  become  degenerate. The timed  activities P2msg and PlOmsg 
are specified in  a  similar  manner. However) the  output  functions of PlOmsg are simpler due 
to  that  the messages of P:ld are suppressed  prior to  error recovery and  thus will not  influence 
the correctness of other processes. 

Message-passing  caused  process state  contaminations  are  represented by the  output  gates 
PlNcP2,  PlOcP2 and P2cP1 which are connected to  the cases (of the timed  activities PINmsg, 
PlOmsg and P2msg, respectively)  representing  erroneous internal messages.  Because C1 is 
relaxed  in this model  whereas P7ld and P2 are  not considered as  the sources of process state 
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Activity 
PlNmsg 

Case 
I 

2 

3 

4 

Table 1: Case  Probabilities for Timed  Activity PlNmsg 
” Probability 

i f  (MARK(PlNctn)==O) 
/* non-contaminated in t e rna l  msg from a non-contaminated s t a t e  */ 
return(1-GLOBALD(prob-ext)) ; 
/* non-contaminated in t e rna l  msg from a contaminated s t a t e  */ 
else r e tu rn (  (I-GLOBALD(prob-ext) ) * (I-GLOBALD(prob-sZm) ) ) ; 
i f  (MARK(PlNctn)==O) 
/* non-contaminated  external msg from a non-contaminated state */ 
return(GLOBALD(pr0b-ext)) ; 
/* non-contaminated  external msg from a contaminated s t a t e  */ 
e l s e  return(GLOBALD(pr0b-ext) * (I-GLOBALD(prob-sZm) ) )  ; 
i f  (MARK(PlNctn)==O) 
/* contaminated  internal msg from a non-contaminated s t a t e  */ 
return(ZER0) ; 
/* contaminated  internal msg from a contaminated s t a t e  */ 
else r e tu rn (  (1-GLOBALD(prob-ext) ) *GLOBALD(prob-sZm) ) ; 
i f  (MARK(PlNctn)==O) 
/* contaminated  external msg from a non-contaminated s t a t e  */ 
return(ZER0) ; 
/* contaminated  external msg from a contaminated s t a t e  */ 
e l s e   r e t u r n  (GLOBALD (prob-ext) *GLOBALD (prob-sZm) ) ; 

contamination by the MDCD protocol, we again need to  make the representations of the 
resulting  erroneous states  discriminable  with  respect  to  the  source of the  contamination. 
Accordingly, as shown in  Table 2, each of the  output  functions of PlNcP2, PlOcP2 and 
P2cP1  first  examines whether  the  “target” process state or P2) is already  contaminated 
by its own error  and if so, the  marking  that  indicates  the own-error  caused  process state 
contamination will be preserved. 

Table 2: Output  Gate Definitions for Modeling Error  Contamination 
Gate 

i f  (MARK(P2ctn) !=  2) PINcP2 
Definition 

MARK(P2ctn) = 1 ; 
MARK(dirtybit) = I ;  

PlOcP2 
MARK (P2ctn) =I ; 
i f  (MARK(P2ctn) !=  2) 

P2cPl i f  (MARK(Pl0ctn) != 2) 
MARK(Pl0ctn) = 1; 
i f  (MARK(P1Nctn) == 0 )  
MARK(P1Nctn) = I ;  

The  output  gates  PINok-ext  and  P2ok-ext  are  connected  to, respectively, the cases of 
PlNmsg and P2msg that represent successful external message  sending. The  output  functions 
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of these  two  gates  are  just  resetting  the  marking of the place d i r t y - b i t  (to  zero), which 
implies that  the process state of P2 is validated  through a successful AT. Although P2 will 
not  perform AT for its  external messages if its process state is not considered contaminated 
according to  the MDCD  protocol,  a  separate  representation for this scenario is not  required. 
This is because the  marking of d i r t y - b i t  would be zero before the completion of the ac- 
tivity P2msg for this scenario and  thus  resetting will have no  effect. This in turn, implicitly 
represents the scenario that P2 sends  a  correct  external message (when its process state is 
considered not  contaminated)  without performing AT. 

The  right  part of the SAN model  consists of instantaneous  activities PlNat and P2at.  The 
first and second  cases  (in  a  top-down order) of each of the activities,  respectively,  represent 
the scenarios  where an erroneous external message that is detected by  AT triggers  error 
recovery and  an  undetected erroneous external message causes  system  failure.  For the first 
case, the corresponding  output  gates will 1) set the marking of the place d i r t y - b i t  to zero, 
and 2) set  the  markings of the places PlOctn and P2ctn to zero if the markings  prior to  the 
completion of P2at  are equal to one,  implying the rollback recovery brings the processes to 
the  non-contaminated  states saved in their  most recent  checkpoints.  Meanwhile, the  marking 
of PlNctn will be set to two,  indicating that Pyw stops execution  upon  error recovery. On 
the  other  hand, if the marking of PlOctn or P2ctn is equal to two, which implies that  the 
state  contamination is caused by an  error of P71d or P2 itself,  respectively, the marking will 
not  be  altered by the  output  gates  representing recovery actions.  This is  because the  MDCD 
protocol  does  not  consider that P7ld and P2 are  the  potential sources of error  contamination 
and  thus will not  be  able  to assure the global state  after recovery to be  free of the error 
conditions  caused by P?ld and P2 themselves. The second  cases of the activities PlOat and 
P2at  are self-explanatory,  i.e., the  outcome  (an  undetected erroneous  external  message) will 
simply set  the  marking of the place f a i l u r e  to one. The case  probability  specification of 
P2at  as  shown in Table 3 is also  marking  dependent.  This is necessary  because P2 does 
not  perform AT for its  external messages 1) after  error recovery, or 2) when its process 
state is considered not  contaminated. It is  worth to  note  that  the  marking  dependent case 
probability  specification  indeed treats  the above  two  scenarios as a limiting  case  in which 
the coverage of AT is  zero. 

In  order to evaluate  the effectiveness of the MDCD  protocol  in terms of reliability  im- 
provement. We also  construct  a SAN model which represents the “baseline  system”  where 
the  MDCD  protocol is not  applied. The model is shown in  Figure 4, which is quite simple 
and self-explanatory. 
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Table 3: Case  Probabilities for instantaneous  Activity P2at  

Activity Probability Case 
P2at 1 

r e t u r n  (GLOBALD (at-coverage) ) ; 
/* AT is  performed  before  recovery */ 
i f  (MARK(P1Nctn) == 1 && MARK(dirtybit) == 1) 

/* AT is  not  performed af te r   recovery   o r  when d i r t y b i t  is  zero */ 
I r e tu rn (  ZERO) ; 

1 2 1 i f  (MARK(P1Nctn) == 1 && MARK(dirtybit) == 1) 
/* AT is  performed  before  recovery */ 
r e t u r n (  1-GLOBALD(at-coverage) ) ; 
/* AT is  not  performed af te r   recovery   o r  when d i r ty -b i t  is  zero */ 
r e t u r n  ( 1) ; 

Figure 4: SAN Model for the Baseline  System 

4.3 Numerical Results 

Based  on the SAN models  developed in the previous  section, we analyze the effectiveness 
of the  MDCD  protocol using the evaluation  tool  UltraSAN [13]. In  particular, we define 
reliability as  the  probability  that  the  system  does  not deliver erroneous  commands to devices 
(Le.,  erroneous external messages)  prior to time t. Letting  the reliability  measures for the 
system that applies the MDCD  protocol and for the baseline  system be  denoted  as RyDCD 
and R:me, respectively, the numerical  solutions of the measures  can be  obtained by defining a 
reward rate  one for each state of the SAN models  in which the  marking of the place f a i l u r e  
equals to one and  computing  the  expected rewards at  time t .  

As mentioned  earlier, the  central  purpose of the analysis is to validate the effectiveness of 
the  MDCD  protocol,  in  terms of reliability  improvement,  under the circumstance  where  the 
criteria  for an ideal  execution  environment  for the protocol  are  not  satisfied.  Accordingly, we 
focus  on  examining the reliability  improvement  in an environment  where 1) the old  software 
components  (corresponding to P:ld and P2) are  not perfectly  reliable, '2) the probability that 
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the  error  conditions in a  contaminated process state  are manifested  in the messages generated 
by the corresponding  process  is less than one,  and 3 )  the coverage of AT is imperfect. Before 
we proceed to describe the numerical  results, we define the following notation: 

pnew Poisson  failure rate of a process  corresponding to a newly upgraded  software 
version (corresponding to  the  rate of the  timed  activity  PlNec). 

pold Poisson  failure rate of a process  corresponding to  an old software version 
(corresponding to  the  rates of the timed  activities  PlNec  and  P2ec). 

pszm Probability  that  error  conditions in a process state  are manifested  in  a mes- 
sage  generated by the corresponding process (corresponding to prob-s2m) 

c Coverage of an acceptance  test (corresponding to  at-coverage). 

X Poisson message sending rate of a process (corresponding to  the  rates of 
the timed  activities of PlNmsg,  PlOmsg and P2msg). 

pext  Probability that  the message a process attempts  to send is an  external 
message (corresponding to  prob-ext). 

We first  examine the effectiveness of the MDCD protocol by evaluating RyDCD and 
R:,', for a mission period of lo4 hours,  as  a  function of pnew. The value assignment  for 
other  parameters is shown in  Table 4, where  all the  parameters involving time  (durations, 
rates,  etc.) presume that time is quantified  in  hours.  The  numerical  results  are  displayed  in 
Figure 5. 

Table 4: Parameter Value Assignment 

pold pext X c Ps2m 
0.9 0.2 10 0.95 

The curves  in  Figure  5 show that 1) when pnew is below the benefit  from  applying 
the  MDCD protocol is not  appreciable; 2) when pnew becomes or  higher,  the reliability 
improvement becomes increasingly  significant;  and 3 )  after pnew reaches 5 x R;"" 
apparently  turns  to  be  unacceptable while RFDCD remains  reasonable.  Thus,  based  on  this 
particular  setting which is rather conservative  with  respect to  the values of pszm and c, we 
can  observe that  the MDCD protocol will  offer significant  benefit as surmised when the 
new version is appreciably less reliable than  the old version. In  other words, the  protocol 
can achieve its goal without  requiring the old version of the  upgraded software  component 
to be perfectly  or  extremely  reliable. Another  interest  insight the curves  provide to us is 
that,  after pnew reaches  0.001, RpDCD not only  remains  reasonable but also stays  steady, 
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Figure 5: Reliability as a Function of pne, 

regardless further  increase of the failure rate of the new version. The underlying  reason for 
this  desirable  result  is  the following: A higher pnew will lead to a greater likelihood that 
error recovery will take place at an earlier time (which implies that P:ld will take over Ppw 
sooner); as a result, pold will dominate  the  reliability of the  system. 

To confirm the above  observations  from a different  perspective, we conduct  another  anal- 
ysis that  evaluates RyDCD and @,' as a function of pold. We again use the  parameter values 
shown in Table 4 but fix pnew to  and  let pold become a variable parameter.  The numer- 
ical results  are shown  in  Figure 6. The observations we get  from  these results  are consistent 
with  those  from the previous  study. That is, the reliability  improvement  resulting  from the 
use of the MDCD protocol will be significant if is equal to  or less than a value that is 
an order of magnitude smaller than pnew. On  the  other  hand,  the curves reveal that  the 
effectiveness of the protocol  increases at a slower pace  after pold reaches lop6 and becomes 
practically  stable  after decreases to  This  indicates  the following: Although  the 
effectiveness of the protocol is an increasing  function of the reliability of the old version in 
general,  it  is  bounded  upper collectively by other  system  attributes, namely, the coverage of 
AT, the  reliability of the new version, and  the likelihood of dormant  error  conditions  that 
are  not  manifested in the messages prior to  recovery action. 

Next we study  the effect of AT'S coverage on  the effectiveness of the protocol. We use 
again  the  set of parameter values in  Table 4 but fixing pnew and pold to  and lo-', re- 
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spectively, and  letting c become a variable parameter. For the sake of illustration, we present 
the coverage of AT and  the  evaluation  results (RyDCD and in their  complimentary 
forms  in  Figure 7. The curves show that so long  as AT’S “uncoverage”  is less than 0.1 (Le., c 
is greater  than 0.9), the unreliability  reduction  (i.e.,  reliability  improvement)  from  applying 
the MDCD  protocol will be significant. 
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We also  conduct  an  evaluation to  study  the effect of psZm on the effectiveness of the  MDCD 
protocol.  Rather surprisingly,  reliability  improvement  from  applying the protocol is relatively 
insensitive to  the variations of this  parameter.  This is indeed a reasonable  result  because 
there exist some tradeoffs. Specifically, while a greater  value of ps2m tends to reduce the 
likelihood of dormant  error  conditions in process states left  behind recovery, it amplifies the 
vulnerability of error  contamination  among  interacting processes (through  error  condition 
manifestation  in  internal  messages).  In  other  words,  the two types of effects compensate 
each other, collectively resulting  in a negligible amount of impact on the effectiveness of the 
protocol. 

5 Summary  and  Future Work 

We have  presented an analysis  on the effectiveness of the MDCD  protocol, an error con- 
tainment  and recovery protocol for onboard  software  upgrading. By exploiting  inherent 
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system  resource  redundancies and  discriminating  interacting software  components  in the 
system  with  respect to  our confidence on their reliability, the  MDCD  protocol achieves its 
low development  cost and low performance  cost  objective.  In  particular,  the message driven 
confidence driven nature of the protocol  eliminates the need for costly process coordination 
or  atomic  action, while guaranteeing  the  system  to reach a consistent  global state  upon  the 
completion of the rollback  or roll-forward actions  carried  out by individual processes during 
error recovery. 

Aimed at validating the effectiveness of the MDCD  protocol  with  respect to  its ability,  in 
a non-ideal  execution  environment, to  enhance  system  reliability when a software  component 
undergoes  onboard  upgrading, we conduct a SAN model  based  analysis. SANS’ capability of 
explicitly  representing  the  interdependencies  among  system  attributes  enables  us to  precisely 
characterize  system  behavior  resulting  from the use of the protocol that  are relevant to 
the reliability  assessment.  Based  on the SAN models, we focus  on  analyzing the effects 
of the system  attributes,  that  violate  the  criteria for the ideal  execution  environment  for 
the MDCD protocol,  on  the effectiveness of the protocol. The analysis  results confirm 
the protocol’s  ability of enhancing  reliability for onboard software upgrading in a non-ideal 
execution  environment. Moreover, the model-based  analysis  provides to  us useful insights 
about  the  system  behavior  resulting from the use of the protocol when the  criteria for an 
ideal  execution  environment are relaxed to various extents,  facilitating effective utility of the 
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protocol. 
I t  is worth  to  mention  that  the MDCD  protocol  described  in  this  paper  can  be  extended 

and generalized. In  particular,  the extension and  generalization will be  aimed at applying 
the methodology to  the  distributed  systems in which we can  discriminate  between  interact- 
ing  software components  with  respect  to  their reliability. Indeed, a number of factors  other 
than  upgrading may result  in differing levels of confidence in  different  software  components 
in a system, for example, we may have better confidence in a software  component  with 
lower complexity or  higher  testability.  In  other  words,  software  components  in a distributed 
application may be categorized into two groups  according to  our confidence in their relia- 
bility. Analogous to  the  strategies used by the MDCD protocol,  the high confidence group 
can  be  exploited to  enhance  the efficiency of error  containment  and recovery. We plan to  
conduct  model-based studies to  investigate  into  the feasibility of generalizing the  concepts 
and framework of the MDCD  protocol. 
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A Error  Containment  and Recovery Algorithms 

i f  (outgoing-message-m-ready) { 

i f  (AT(m) == success) { 
if   (external(m))  -E 

/ /  P y  maintains its msg count  and  conveys it t o  P2 and P:ld for  recovery  purpose 
msg-count++; 
msg-send(m, nul l ,   device)  ; 
/ /  inform P;ld and P2 t h a t   p r i o r  messages a re   va l id  
msg-send("passed-AT",  msg-count , P:ld) ; 
msg-send("passed-AT" , msg-count , P2) ; 

error_recovery(qld,  ~ 2 )  ; 
ex i t   ( e r ro r )  ; 

3 e l s e  { 

3 
> e l s e  { / /  m is an in t e rna l  message 

msg-count++; 
msg-send (m, msg-count , P2 ; 

3 
3 
i f  (incoming-message-m-arrives) { 

application-msg-reception(m) ; 
3 

Figure 8: Error  Containment  Algorithm  for Pyw 

if (outgoing-message-m-ready) { 
msg-count++; / /  msg-count keeps  track of P7ld's own messages 
msg-log(m, msg-count); / /  suppress and log  the  outgoing message 

3 
i f  (incoming-message-m-arrives) { 

if (m.body == "passed-AT") { // P y  o r  P2 repor t s  a successful  AT 
VRYW = m.msg-count; / /  last  va l id  msg of P y  
i f   ( d i r ty -b i t  == 1) { 

d i r ty -b i t  = 0 ;  
checkpointing(Gld) ; 

3 
3 e l s e  { // application-purpose message  from P2 

//  check the  piggybacked d i r t y  b i t  and own process   State  
i f  (m.dir ty-bi t  == I && d i r t y - b i t  == 0 )  { 

checkpointing(qld) ; 
d i r ty -b i t  = 1; 

3 
application-msg-reception(m) ; 

3 
3 

Figure 9: Error  Containment  Algorithm  for P;ld 
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i f  (outgoing-message-m-ready) { 
if   (external(m)) { 

i f   ( d i r t y - b i t  == 1) { 

d i r ty -b i t  = 0 ;  
//  msg-count of P2 keeps  track of msg sequence number of P y  
msg-send(m, nul l ,   device) ;  
msg-send("passed-AT" , msg-count , P71d) ; 
checkpointing(P2) ; 

error-recovery(qld,  ~ 2 )  ; 

i f  (AT(m) == success) { 

3 e l s e  { 

3 
3 e l s e  { 

/ /  outgoing msg from a clean  process state, no  check  needed 
msg-send(m, null ,   device) ; 

3 
3 else { // in t e rna l  message 

msg-send(m, n u l l ,  P y )  ; 
/ /  piggybacking  dirty-bit   to msg t o  P7ld to   s ignal   possible   contaminat ion 
m = append(m, d i r ty -b i t )  ; 
msg-send(m, n u l l ,  P:ld) ; 

> 
3 
i f  (incoming-message-m-arrives) { // must be  from P y  

msg-count = m.msg-count; 
i f  (m. body == "passed-AT") { 

i f   ( d i r t y - b i t  == I)  { 
checkpointing(P2) ; 
d i r ty -b i t  = 0 ;  

3 
3 else { 

if (d i r ty -b i t  == 0 )  { // checkpointing  before  gett ing  "dirty" 
checkpointing(P2) ; 
d i r ty -b i t  = I ;  

3 
application-msg-reception(m) ; 

3 
3 

Figure 10: Error  Containment  Algorithm  for P2 

i f   (d i r ty -b i t  == 1) 

3 
// switch  role  with P y  and go forward 
switch-to-active(VV', mSg-COUnt) ; 
continue ; 

rollback(most-recent-ckpt) ; i f   (d i r ty-b i t  == 1) { 

3 
/ /  go forward 
continue ; 

rollback(most-recent-ckpt) ; 

(a) For P:ld (b) For P2 

Figure 11: Error Recovery Algorithms 
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